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Abstract

The proofs of two fundamental theorems, on which the formulation of supersymme-
try rests, are examined in detail. The first one, due to Coleman and Mandula, forbids
the fusion of bosonic internal symmetries with Poincaré invariance in any way other
than the trivial. The second one is the Hagg- Lopunszánsky-Sohnius theorem which
specifies the most general structure of the fermionic symmetry that is allowed to be
fused nontrivially with the symmetry of the Lorentz group.

1 Introduction

The Coleman and Mandula theorem puts a straightjacket on the type of symmetry the S-
matrix can have. This theorem makes it impossible to fit internal and spacetime symmetry
groups into a bigger group, where the bigger group is not just a product of former and
the Poincaré group. In the derivation of the Coleman and Mandula theorem the internal
symmetry generators are assumed to be bosonic, obeying a Lie algebra. But by taking into
account anticommutation and extending the Lie algebra to a Z2 graded Lie algebra, one can
have a nontrivial fusion of the fermionic symmetry with the Lorentz group. A consequence
of the HLS theorem is the most general form of the algebra of supersymmetry which leads
to supermultiplets with bosonic and fermionic partners.

2 Coleman and Mandula Theorem

Theorem 1 (Coleman and Mandula) The full symmetry group G of the S-matrix, is
locally isomorphic to the direct product of an internal symmetry group and the Poincaré
group.
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2.0.1 Assumptions

1. “Particle number finiteness”: For any mass M there are only a finite number of particle
types with mass less than M.

2. “Occurence of scattering”: Any two-paricle state undergoes some scattering at almost
all energies (i.e. except possibly an isolated set).

3. “Weak-elastic analyticity”: The amplitude for elastic 2-body scattering is an analytic
function of the scattering angle at almost all energies and angles.

4. The generators of the symmetry group of the S-matrix are integral operators in mo-
mentum space whose kernels are distributions.

2.1 Proof

A symmetry generator has the following properties:

• It is Hermitian.

• It commutes with the S-matrix.

• The commutator of two symmetry generators is also a symmetry generator.

• It takes single particle states on the mass-shell into single particles states of the same
mass (O’Raifairteigh’s theorem).

• Its action on a multiparticle state is the direct sum of its action on individual single
particle components.

2.1.1 Case-I

Here we take the internal symmetry generators to commute with the four momentum oper-
ator Pµ:

[Bα, Pµ] = 0.

The Lie algebra structure of the group is

[Bα, Bβ] = i
∑
γ

Cγ
αβBγ.

where Cγ
α,β, are the structure constants. The action of Bα on a one particle state is

Bα | p〉 = bα(p) | p〉.

In general,
Bα | pm〉 =

∑
m′

bα(p)m′m | pm′〉.
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where m denotes both the spin index and particle type of definite mass
√−pµpµ. The

mapping from Bα to bα(p) is a homomorphism but this is not an isomorphism. Isomorphism
would require ∑

α

cαbα(k) = 0 ∀ momenta k .

so that
∑

αcαBα = 0. But
∑

α cαbα = 0 for a particular p does not imply∑
α

cαbα(k) = 0 (∀ k).

In a two particle state a particle (of momentum and type) p can elastically scatter with a
particle q to give particles p′ and q′, where the masses are√

−p′
µp

µ′ =
√
−pµpµ ,

√
−q′µp

µ′ =
√
−qµqµ.

We then have
Bα | p, q〉 = bα(p, q) | p, q〉,

where
(bα(p, q))m′n′,mn = ((bα(p))m′mδn′n + (bα(q))n′nδm′m

and δmm = N(
√−pµpµ), the multiplicity of p-type particles etc. The invariance of the

S-matrix implies the similarity transformation,

bα(p′, q′)S(p′, q′; p, q) = S(p′, q′; p, q)bα(p, q).

Taking the trace,we have
Tr bα(p′, q′) = Tr bα(p, q),

i.e.

N(
√
−qµqµ) trbα(p′) + N(

√
−pµpµ) trbα(q′) = N(

√
−qµqµ) trbα(p) + N(

√
−pµpµ) trbα(q).

Using the finiteness of N, one can show that bα(p) are finite hermitian matrices. The con-
servation of momentum (p′ + q′ = p + q) and the above equation can be used to show that
the function

tr bα

N(
√−pµpµ)

is linear in pµ.
Define a new operator as

B#
α ≡ Bα − aµ

αPµ,

where
B#

α | pm〉 = b#
α (p)m′m | pm′〉.

One can show that B#
α obeys the original Lie algebra and commutes with the S-matrix

and furthermore ∑
α

cαb#
α (k) = 0 ∀ k.
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Thus an isomorphism gets established between B#
α and b#

α (p). Now a theorem1 of Lie
Algebras immediately gives the result that the set {B#

α } must be the direct sum of a compact
semi-simple Lie algebra and U(1) generators. By suitably choosing a Lorentz generator J,
which leaves any pair of mass-shell momenta p and q invariant, one can dispose of the U(1)
Lie algebras. It can be further shown that the generators of the semi-simple compact part
of the the Lie algebra, say B#

β , commute with Lorentz transformation and they are the
genarators of internal symmetries. So we get, the symmetry genarators Bα that commute
with Pµ are either internal symmetry generators or linear combinations of the componentx
of Pµ itself. This is the proof of Coleman-Mandula theorem when the internal symmetry
generators commute with the four momenta operator.

2.1.2 Case-II

Here we have the symmetry generators Aα not commuting with Pα:

[Aα, Pµ] 6= 0.

We can write
Aα | p, n〉 =

∑
n′

∫
d4p′(Aα(p′, p))n′n | p

′, n′〉,

where the kernel Aα is given b2y

Aα(p′ − p) =
Dα∑
n=0

Cnδn
(4)(p′ − p).

δ(4)
n being an nth momentum derivative of the four dimensional delta-function in momentum

space and Dα is the order of the highest derivative present in the sum.
Define

Bµ1...µDα
α ≡ [P µ1 , [P µ2 , ...[P µDα , Aα]]...]

Since Dα + 1 factors of (p′ − p), multiplied by Dα momentum derivatives on δ(4)(p − p′),
vanish, one can get the following.

〈p | [Bµ1...µDα
α , P µ] | p′〉 = 0.

If
Bµ1...µDα

α | p〉 = bµ1...µDα
α (p) | p〉,

one can write
bµ1...µDα
α (p) = b]µ...µDα

α + aµµ1...µDα
α pµ.1.

1A Lie algebra of finite Hermitian matrices is at most the direct sum of a semi-simple compact Lie algebra
and some number of U(1) Lie algebras.

2This means the nth derivative of a delta function. The fourth assumption on page-2 implies that the
kernel of a generator is a distribution in momentum space. Then a theorem from distribution theory is used.
It says that a distribution which vanishes everywhere except at one point can be expanded as a finite sum
of derivatives of delta functions.
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Hence b
]µ1...µDα
α is traceless, and both b

]µ1...µDα
α and a

]µµ1...µDα
α are momentum independent.

By O’Raifairteigh’s theorem,
[Aα,−PµP

µ] = 0.

For Dα ≥ 1, we have

0 = [P µ1Pµ1 , [P µ2 , ...[P µDα , Aα]]...] = [P µ1 , ...[P µDα , Aα]]...]Pµ1 + P µ1 [Pµ1 , ...Aα]]...] = 2Pµ1B
µ1...µDα
α

and therefore
pµ1b

µ1...µDα
α (p) = 0.

For a massive particle
pµpµ 6= 0

and the above must hold for p in any timelike direction. So

b]µ...µDα
α (p) = 0

and
aµµ1µ2...µDα

α = −aµ1µµ2...µDα
α .

But
aµµ1µ2...µDα

α

is symmetric under exchange of indices. So there are two options.
Either

Dα = 0 or Dα = 1,

since, for Dα ≥ 2,
aµµ1µ2...µDα

α = 0,

which is a trivial case. For Dα = 0
[Aα, P µ] = 0.

This case has already been discussed in Case-I

For Dα = 1, one has b#µ
α = 0.

So
[Aα, P µ] = aµν

α Pν .

Thus the general form of Aα is

Aα = −1

2
iaµν

α Jµν + Bα, where

Jµν are the generators of the homogenous Lorentz group with

[Pν , Jρσ] = −iνρPσ + iνσPρ

and Bα are symmetry generators that commute with Pµ.
Finally, since Bα commute with Pα, in general they are linear combinations of internal
symmetry generators and components of Pµ. This completes the proof of the Coleman-
Mandula theorem.
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3 HLS theorem

Theorem 2 (Hagg, Lopuszánski,Sohnius) The most general continuous symmetry of the
S-matrix, consistent with the assumtions of the Coleman-Mandula theorem, is that pertaining
to a Z2 - graded Lie algebra where the even operators are a direct sum of the Poincaré and
the other symmetry generators (i.e the latter two sets of generators mutually commute). The
Z2-odd operators belong to the representations (0, 1

2
) and (1

2
, 0) of the homogeneous Lorentz

group.

3.1 Discussion

• QAB
ab are a set of operators forming an (A,B) representation of the homogeneous Lorentz

group.

• A, B are either integers or half-integers.

• a,b are indices that run from -A to +A and -B to +B respectively. So there are
(2A+1)(2B+1) number of operators.

• A = 1
2
(J + iK) and B = 1

2
(J − iK). J are the generators of rotations, K are the

generators of boosts.

• They satisfy the following commutation relations.

[A, QAB
ab ] = −

∑
a′

J
(A)
aa′ QAB

a′b and [B, QAB
ab ] = −

∑
a′

J
(B)
bb′ QAB

ab′ .

So effectively the following lemmas have to be proved.

1. The anticommutation of fermionic generators and their adjoints involve nonzero bosonic
symmetry generator belonging to the (A + B, A + B) representation.

2. The fermionic generators can only belong to the (0, 1
2
) and (1

2
, 0) representation.

3. The fermionic generators satisfy the following anticommuatation relation with their
adjoints3.

{Qar, Q
∗
bs} = 2δrsσ

µ
abPµ.

4. The fermionic generators commute with momentum.

[Pµ, Qar] = [Pµ, Q
∗
ar] = 0.

5. The fermionic generators obey the following anticommutation relation with each other
giving rise to internal bosonic symmetry generators Zrs known as central charges.

{Qar, Qbs} = eabZrs.

Where eab are some Clebsch-Gordon coefficients.

6.

[Zrs, Qat] = [Zrs, Q
∗
at] = [Zrs, Ztu] = [Zrs, Z

∗
tu] = [Z∗

rs, Qat] = [Z∗
rs, Q

∗
at] = [Z∗

rs, Z
∗
tu] = 0.

3Here * means hermitian adjoint
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3.2 Proof

3.2.1 Proof of lemma 1

If QAB
ab belongs to (A, B) representation. Then QAB∗

ab belongs to (B, A) representation, since

QAB∗
ab = (−1)A−a(−1)B−bQ̄BA

−b−a,

which is a similarity transformation and Q̄BA
ba transform according to the representation

(B, A). Now

{QAB
ab , QAB∗

ab } = (−1)A−a′
(−1)B−b′

A+B∑
C=|A−B|

A+B∑
D=|A−B|

C∑
c=−C

D∑
d=−D

CAB(Cc; a−b′)CAB(Dd;−a′b)XCD
cd .

It follows that
XA+B,A+B

A+B,−A−B = (−1)2B{QA,−B
A,−B, QAB∗

A,−B},
where XCD

cd is the (c, d)-component of an operator that tranforms according to (C, D) rep-
resentation of the homogeneous Lorentz group. CAB are the Clebsch-Gordon coefficients for
coupling A and B.

XA+B,A+B
A+B,−A−B = 0 if QAB

A,−B = 0.

But then, by using raising and lowering operators, one sees that all QAB
ab = 0. So, for any

nonvanishing fermionic generator, its anticommutation with its adjoint belongs to the (A +
B, A + B) representation. (Proved.)

3.2.2 Proof of (0, 1
2
) and (1

2
, 0) representation (lemma 2)

A symmetric traceless tensors of rank N transforms acoording to the representation (N
2
, N

2
).

An antisymmetric tensor of rank 2 transforms according to the representation (1, 0)⊕ (0, 1).
The Dirac field tranforms according to the representation (1

2
, 0)⊕ (0, 1

2
).

According to the Coleman-Mandula theorem the bosonic symmetry generators consist
of Pµ(tranlations genarators, representation (1

2
, 1

2
)), Jµν( Lorentz transformation, repre-

sentation (1, 0) ⊕ (0, 1)) and TA (internal bosonic symmetry,representation (0, 0)). But
it is shown in the above subsection that the nonzero bosonic operator arising from the an-
ticommutation of a fermionic operator and its conjugate belongs to the (A + B, A + B)
representation. As the bosonic symmetry generator consist of (1

2
, 1

2
), the fermionic generator

would belong to (A, B) such that

(A + B) ≤ 1

2

Thus fermionic symmetry generators can only belong to (0, 1
2
) and (1

2
, 0). (Proved.)

3.2.3 Proof of lemma 3

Qar belongs to (0, 1
2
) representation Q∗

bs belongs to (1
2
, 0) representation. So {Qar, Q

∗
bs} must

belong to (1
2
, 1

2
) representation. As

(0,
1

2
)⊗ (

1

2
, 0) = (

1

2
,
1

2
)
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Using the completeness of σµ matrices, we have

{Qbs, Q
∗
ar} = Nµ

rs(σµab),

where Nµ is a matrix operator. It has the transformation property

U−1(Λ)NµU(Λ) = Λµ
νN

ν .

So this is a four vector operator. The Coleman-Mandula theorem asserts that P µ is
the only four vector bosonic symmetry operator. So Nµ ∝ P µ or Nµ

rs = 2P µNrs.

As
{Qar, Q

∗
bs}∗ = {Qbs, Q

∗
ar} = 2N∗

rsσ
µ
abPµ = 2Nsrσ

µ
abPµ,

Nrs is Hermitian.

Qar are linearly independent, so

Q ≡
∑
r

dacrQar 6= 0

except for trivial case where all the coefficients vanish. Now

〈Ψ | {Q,Q∗} | Ψ〉 > 0,

or
〈Ψ |

∑
ab

σµ
abPµdad

∗
b | Ψ〉

∑
rs

crc
∗
sNrs > 0.

This means that ∑
rs

crc
∗
sNrs > 0,

except for the trivial case where all c’s or d’s are zero. But
∑

abσ
µ
abPµdad

∗
b acting on any

on-mass-shell state is positive definite. This guarantees that Nrs is positive definite.
Defining

Q
′

ar ≡
∑
s

N
− 1

2
rs Qas,

one is led to
{Q′

ar, Q
′∗
bs} = 2δrsσ

µ
abPµ,

where N
− 1

2
rs is the normalization constant. (Proved.)

3.2.4 Proof of lemma 4

Pµ is an operator represented as (1
2
, 1

2
),

Qar is an operator represented as (0, 1
2
).

So [Qar, Pµ] is an operator represented as either

(
1

2
+ 0,

1

2
+

1

2
) or (

1

2
− 0,

1

2
− 1

2
),
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i.e. either

(
1

2
, 1) or (

1

2
, 0).

But a symmetry generator like

(
1

2
, 1)

does not exist, according to lemma 1. Hence

[Qar, Pµ] ∝ Q∗,

which is the (1
2
, 0) representation.

Define
M≡ σµP

µ.

Now,
[Mab, Qcr] =

∑
s

eacKrsQ
∗
bs

where eac is the Clebsch-Gordan coefficient. For spin the singlet case the above equation
would give

[M− 1
2
,− 1

2
, [M− 1

2
,− 1

2
, Q 1

2
r, Q

∗
1
2
s]] = −4M− 1

2
,− 1

2
KK†

rs.

Now the left hand side can be written as

[M− 1
2
,− 1

2
, [M− 1

2
,− 1

2
, 2δrsσ

µ

− 1
2
,− 1

2

Pµ]] = [(σµP
µ)− 1

2
,− 1

2
, [(σµP

µ
− 1

2
,− 1

2
, 2δrsσ

µ

− 1
2
,− 1

2

Pµ]]

= 0.

Since M− 1
2
,− 1

2
6= 0 for nontrivial momenta,

KK† = 0 which implies K = 0,

leading to
[Qar, Pµ] = 0.

By complex conjugation one can show

[Q∗
ar, Pµ] = 0.

(Proved.)

3.2.5 Proof of lemma 5

{Qar, Qbs} would belong to the linear combination of

(0 + 0,
1

2
+

1

2
) and (0 + 0,

1

2
− 1

2
),

i.e. the representations in
(0, 0) and (0, 1).
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Since
[Qar, Pµ] = 0,

one gets
[{Qar, Qbs}, Pµ] = 0.

Also,
[Pµ, Jµν ] 6= 0

implies that
{Qar, Qbs}

is not a (0, 1) symmetry generator. Rather, it leads to a (0, 0) symmetry generator. i.e. it is
an internal symmetry generator.

{Qar, Qbs} = eabZrs

The left hand side is a symmetric tensor. As eab is an antisymmetric tensor, Zrs should be
an antisymmetric tensor. i.e.

Zrs = −Zsr

(Proved.)

3.2.6 Proof of lemma 6

Jacobi identity for Qar, Qbs, Q
∗
bs is

[{Qar, Qbs}, Q∗
bs] + [{Qbs, Q

∗
ct}, Qbs] + [{Q∗

ct, Qar}, Qbs] = 0.

The last two terms give zero. So

[{Qar, Qbs}, Q∗
bs] = 0.

From another Jacobi identity

−{Zrs, Qat, Q
∗
bu] + [{Q∗

bu, [Z∗
rs}, Qat]− {Qat, [Q∗

bu}, Zrs] = 0,

one gets
{Q∗

bu, [Z∗
rs, Qat]} = 0.

Now [{Q∗
bu, Z

∗
rs}, Qat] belongs to (0, 1

2
). So

[Z∗
rs, Qat] = 0.

Complex conjugation would give

[Zrs, Q
∗
ct] = 0.

Other properties of the central charges can be derived similarly. (Proved.)
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4 Discussion/Conclusion

The Coleman-Mandula theorem disallows any nontrivial fusion between bosonic symmetries
and Poincaré invariance. The HLS theorem shows that fermionic symmetries fusing non-
trivially with Lorentx invariance, are allowed for the S-matrix. These fermionic generators
can be taken in the (1

2
, 0) ⊕ (0, 1

2
) representation of the homogeneous Lorentz group. They

commute with Pµ but not with Jµν . Their anticommutators are hermitian bosonic genera-
tors called central charges which obey the Coleman-Mandula theorem. The algebra of these
fermionic generators is the supersymmetry algebra. It leads to supermultiplets with fermion
and boson partners, but we have not gone into that aspect.
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