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The steady-state frequency response of the Duffing oscillator in the non-chaotic regime is obtained
both analytically as well as numerically. The associated phenomena of jumps and hysteresis are
studied. The Duffing Equation is solved numerically and the behavior of the system in the phase
space is investigated at different parameter values. The system is shown to exhibit period doubling

bifurcations which eventually lead to chaos.

I. INTRODUCTION

The Duffing equation characterizes the class of oscil-
lator systems with cubic nonlinearity.It is extremely rich
in its properties showing a wide variety of nonlinear phe-
nomena. The equation arises in a large number of physi-
cal as well as biological systems and has wide applicabil-
ity.

The Duffing equation is usually written in the form ,

¥+ 2% 4+ wo’x + ex® = Feos(wt) (1)

where + is the coefficient of damping and w, the natural
frequency of oscillation. The term Fcos(wt) character-
izes a harmonic forcing of the oscillator at an angular
frequency w. An appropriate rescaling of # and t casts
the equation to the simpler form |,

# +2y% + x + 2° = Fcos(wt) (2)

In what follows a study of some of the most interesting
aspects of this equation has been made.

II. FREQUENCY RESPONSE

The frequency response of the oscillator is studied with
the assumption that the steady state response of the sys-
tem is given by ,

z(t) = A(w)cos(wt — ) (3)

On substituting Eq.(3) into the oscillator equation (2),we
obtain upon equating the coefficients of the orthogonal
functions cos(wt) and sin(wt) on either side ,

A1 —-w?)+ %A2] cos(0) + 2vAwsin(f) = F  (4)

A1 —w?) + Z.A2] sin(f) — 2y Awcos(@) =0 (5)
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Squaring and adding Eqns.(4)&(5),we get the frequency
response equation as

A2[(1—w?) + %AQF + (27Aw)? = F? (6)

The frequency response of the oscillator for various pa-
rameter values are plotted below :

FIG. 1: Frequency response of the duffing equation with v =
0.1 and F' = 0.5.

In the Figure 1. it is to be noted that for w in the range
~ (1.4 — 1.6), the amplitude has three roots. This has
important implication in the phenomenon of hysteresis
which we shall discuss in the next section.

Figure 2. shows that as the damping is decreased, the
range of w in which the amplitude is triple-valued in-
creases. In Figure.3, we see that the range of w over
which three values of A(w) exists has decreased for in-
creased damping. Finally when damping increases to
large values, the amplitude becomes a single-valued func-
tion of w and hysteresis does not occur anymore (Fig-
ure.4).

When the forcing is increased, the maximum amplitude
of response increases almost linearly with wy4, . asis seen
from Figure 5.
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FIG. 2: Frequency response of the duffing equation with v =
0.01 and F = 0.5.
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FIG. 3: Frequency response of the duffing equation with v =
0.12 and F = 0.5.
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FIG. 4: Frequency response of the duffing equation with v =
0.15 and F = 0.5.

III. HYSTERESIS AND JUMPS

An interesting phenomenon which occurs as a conse-
quence of triple-valuedness of amplitude is hysteresis [1].
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FIG. 5: Frequency response of the duffing equation with v =
0.01 and F = 0.05,F = 0.5 and F = 5.0

In Figure.6, there are three roots of A(w) and §(w) in the
interval 1.4 < w < 1.7. As will be shown later, the roots
on the curve BEC correspond to unstable saddle points
whereas those on either AB or CD are stable centers. If
an oscillator is started at low driving frequency w and w
is gradually increased , then the steady state amplitude
will rise along the stable curve AB upto the point B af-
ter which it abruptly jumps to the point C and continues
along CD. On the other hand, if we start the oscilla-
tor at high w and decrease the driving frequency then
the amplitude will rise along DCE. Beyond E, the only
stable point lies along the curve FA. The corresponding
behavior of the steady-state phase is shown in the adja-
cent figure. So there is again a jump from E to F. Since
along the two directions of changing w the jumps occur
at different points this phenomenon is called hysteresis.

FIG. 6: The phenomena of hysteresis and jumps. The fig-
ure on top shows the steady state amplitude as a function of
w while the figure below shows the steady-state phase as a
function of w



A. Stability

The above discussion of hysteresis rests upon the state-
ment that the roots on the curve BC represent unstable
points whereas the roots on the curves AB and CD are
stable. To show this we shall consider a solution of the
Duffing Equation ( Eq.2) in the form :

z(t) = A(t)cos(wt) + B(t)sin(wt) (7

where A(t) and B(t) are time dependent amplitudes.
Substituting this into Eq.2. we obtain the differential
equations for A(t) and B(t) as,

A(t) +27A() + (1 — w?) A(t) + 2w[B(t) + vB(t)]
P + AOB O] = F (8)

B(t) +2yB(t) + (1 — w?)B(t) — 2w[A(t) + vA(t)]
£20B° (1) + BO A0 =0 (9)

From the numerical solution of these coupled equations
we can obtain a plot of the amplitude A = v/ A2 + B2 ver-
sus the phase § = tan~!(B/A) with time as the parame-
ter. From our steady-state study we should expect that
a trajectory in the (A(t),d(t)) plane would spiral into
their steady-state stable points. As a specific example we
study the case where w = 1.5, F' = 0.5 and v = 0.1. The
steady state frequency response corresponding to these
parameters are plotted in Fig.1 which we again repro-
duce here in Fig.7. for reference. = The above figures

A
1.4 1agorrl” ]
1.z
1.10002
1 I
1
1
0.8 !
0.6 \
.
1
0.2 [
r
L ™
0.5 1 1.5 z

show the steady state roots of A4 and ¢ for w = 1.5.
On the (A(t),0(t)) plane these are the points ,pl =
(0.435723,2.87709),p2 = (1.10092,2.42004) and p3 =
(1.38977,0.986063).

Now to be in accord with our explanation of hysteresis,
the point p2 should be a unstable saddle point while the
points pl and p2 should be stable nodes. That this is
actually the situation is borne out by the plot below.
Here we notice that all trajectories have spiraled either
into pl or p3 even when the initial position is near p2.
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FIG. 7: Frequency Response of Amplitude & Phase w = 1.5,
F=057=01
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FIG. 8: The steady state roots of ¢ for w = 1.5

IV. STUDIES IN THE PHASE PLANE

The Duffing Oscillator exhibits a wide variety of phe-
nomena on the phase (z.z) plane. For very low forcing
the phase space trajectory is an ellipse, the motion being
almost simple harmonic with period equal to that of the
driving force ( Fig.9).

FIG. 9: The phase trajectory for F =05 ,v=01 w=14

As the forcing is increased the effect of nonlinearity
creeps in and the response no longer remains sinusoidal.



The phase-space trajectory becomes distorted.( Fig.10).

FIG. 10: The phase trajectory for F =5, v=0.1 w=14

As the forcing is increased further an interesting phe-
nomenon sets in. The oscillator does not return to ini-
tial phase point after one period of the driving force. It
returns only after two such time-periods have elapsed.
This is the so-called “Period-doubling”. It is conve-
nient to look for period-bifurcations in what is called
the Poincare Section If we take snapshots of the time-
evolving phase-point at regular intervals of time ( usually
the fundamental period) , then the set of points obtained
is the Poincare Section. If the motion has the period
same as the fundamental, then the Poincare section will
be a single point. This is easy to understand because
if we take snapshots of the phase point after each inter-
val T, say, and if the point returns to its initial position
with the same period T then every time we will be sam-
pling the same point. However if we have n points on the
Poincare section, then it indicates that the motion has a
period nT'. For F=20 in the system we have been con-
sidering so far we see a period two trajectory (Fig.11).In
the Poincare section we find two points as expected.

As we further increase F to 24.8 we observe a period
-three response.(Fig 12).

This trend continues and we land upon a period-4 re-
sponse at F=25.2.(Fig.13)

Another beautiful phenomenon on the phase plane is
the occurrence of phase-trajectories which are mirror re-
flections of each other about both the axes. If we resolve
the Duffing Equation into two first-order equations as :

=y (10)
§=—2vy —x —2® + fcos(wt) (11)

then we shall notice that they are invariant under the
substitutions * — —z and — —y. and ¢ — ¢ + 7.Let us
call this group of transformations S. Hence there can be
two types of orbits: orbits {x(t),y(t)} which are symmet-
ric under S like the ellipse in Fig(9) and orbits which are
not, like the one in Fig.11. The existence of the symme-
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FIG. 11: The period-2 response at F=20, v = 0.1 .w =
1.4.The adjacent Poincare section has two points.
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FIG. 12: The period-3 response at F=24.8 v = 0.1 w =
1.4.The adjacent Poincare section has three points.

try S implies that for these orbits there will exist a con-
jugate orbit which will look mirror-reflected about both
axes. This is illustrated in Fig.14, where the change in
initial conditions has resulted in reflected orbits.

There is another related event.If we slowly increase
the forcing keeping the initial point fixed, the phase tra-
jectory first evolves smoothly i.e. gets slowly modified
retaining the initial shape. However, it often happens
that at some value of F the trajectory switches to its re-
flected conjugate. This is illustrated below. This may
be explained as follows.For a given forcing,there are sets
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FIG. 13: The period-4 response at F=25.2, v = 0.1 ,w =
1.4.The Poincare section has four points.
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FIG. 14: The antisymmetric orbits. The left one is for initial
condition £, = —1,y, = 1 while the right one is for the initial
condition z, = 1,y, =1

B £ = 10.9451387 P £ = 10.945138
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FIG. 15: The orbit switches discontinuously from one config-
uration to its reflected conjugate at a sharp value of forcing.

of initial conditions on the phase space which will lead
to one or the other of the conjugate pairs.These ini-
tial conditions are clustered in the phase-space as non-
intersecting patches.When the forcing is changed, these
patches deform. It may happen that a phase point which
was well within one such patch may , at a particular
value of forcing come at the boundary between two such
patches.Then on an infinitesimal change of forcing, the
trajectory switches to the reflected counterpart.

A. CHaos

For a certain set of parameter values, the period-
doubling of the Duffing oscillator keeps on occurring for
increasing value of the forcing amplitude.This eventually
leads to the situation when the system has practically
an infinite period. The motion therefore becomes aperi-
odic but remains bounded.The phase trajectories start-
ing from any phase point ends up into a limited area
of the phase space and remains forever bounded in it.
This attracting set is neither an equilibrium point, nor
quasiperiodic and is called a strange attractor[2]. It is
an attractor in the sense that after the transients have
died the phase-space trajectories will end up inside this
geometrical structure. Inside the strange attractor , none
of the trajectory is closed. The trajectories are non-
intersecting and exponentially diverge away from each
other. Due to this later property , the system exhibits
extreme sensitivity to initial conditions and the motion
is completely unpredictable, This means that the system
has turned chaotic. Another interesting aspect is that
although within the attractor the non-intersecting tra-
jectories diverge exponentially from each other ,they do
not fill the whole phase space. The strange attractor is
thus a fractal having a dimension between one and two.In
the Poincare section the strange attractor appears as a
set of infinite points inside a structure having a definite
shape. This shape is practically independent of initial
conditions. The strange attractor in the Poincare section
is shown in Fig.17. The fact that the strange attractor

FIG. 16: The chaotic phase trajectory for ' = 25 , v = 0.1
w=13

has a definite shape irrespective of the fact that the tra-
jectories inside it are diverging shows that the system
though apparently chaotic has some kind of order in it.

V. POWER SPECTRUM ANALYSIS

A powerful tool for investigating dominant frequencies
in the response of a nonlinear oscillator is the Fourier
Transform.
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FIG. 17: The strange attractor on the Poincare section

From the numerical solution of the Duffing Equa-
tion (Eq.1),we have sampled N values of the co-ordinate
x(t) at equally spaced points in time. On the data set
(zo,z1,Z2,....xv) so obtained, we have performed a dis-
crete Fourier Transform

—2mikj

N
1
- e~ (k=0,1,2,.N—1) (12
i thEZOxJe ( ) (12)

What the Fourier Transform basically does is to single
out the various frequency components present in the sig-
nal. Here fi, which is in general complex, provides a
measure of the weight with which the frequency wy con-
tributes to the signal. We define the power spectrum]3]
by :

P(wi) = fifi = | fr I?

A sharp peak in the P(wy) versus wy plot will indicate
that the particular frequency is dominant.

As a simple illustration, let us consider the case when
the forcing is low and the response is period-1 with the
frequency of the driving force. Here we should expect
a power spectrum with a single peak at the forcing fre-
quency. Fig.18 shows that this is indeed the case.

Fig.19 shows the power-spectrum of for a period-2 re-
sponse .Here we should expect a peak at the driving fre-
quency w and another peak at 3 which we indeed ob-
serve. However we get something extra here. There is
a strong peak at 2w indicating the strong existence of
a superharmonic. We may note that the existence of
this superharmonic is not obvious from phase plot study.
This illustrates the power of the Fourier method.

However the richness of the frequency spectrum is ob-
servable in the case when the oscillator enters the chaotic
regime. The power spectrum in this case is shown in
Fig.20.

This power-spectrum shows that the oscillator though
driven by a single frequency has dominant responses at a
large number of different frequencies. Extremely promi-
nent among them is the superharmonic at 3w and the
subharmonics of frequency ¥ and 3. These show that
the Duffing Oscillator has considerable response at fre-
quencies which are integral multiplies and sub-multiples
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FIG. 18: The power-spectrum for FF = 0.2 , v = 0.1
w = 1.4.This plot generated in Mathematica is interpreted
as follows. We observe a peak at 223 and a symmetric
peak at (1000 — 223) = 777. This basically means that there
is a single dominant frequency component with frequency
223/1000 = 0.223. This frequency is exactly the driving fre-
quency 3= = 0.223.
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FIG. 19: The power-spectrum for F' = 10 , v = 0.1 w =
1.4.This plot generated in Mathematica is interpreted as fol-
lows. We observe a peak at 223 and a symmetric peak at
(1000 — 223) = 777. This corresponds to a frequency com-
ponent with frequency 223/1000 = 0.223. This frequency
is exactly the driving frequency vy = 3= = 0.223. We
also note a peak at 111.5, corresponding to the frequency

111.5/1000 = 0.1115 corresponding to %2. There is also a

strong peak at 446, which corresponds to the frequency 2vy.

of the driving frequency. This points to the possibility
that the oscillator will exhibit large amplitude responses
at these frequencies. In fact such response are observed
in experiments and are called subharmonic and super-
harmonic resonances.

VI. CONCLUSION

In this report we have made quite a detailed study of
the Duffing Oscillator system. We have investigated a
rich spectrum of phenomena which delineates the impor-
tance of the Duffing Equation as a model of nonlinear
systems.

1. We have observed and analyzed the phenomena of
Jumps and Hysteresis.
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FIG. 20: The power-spectrum for F = 25 , v = 0.1 w =
1.3. This Mathematica plot is interpreted as follows. The
full horizontal scale here is 2000 .We observe the mightiest
peak at 414 (and its companion peak at 2000 — 414).Thus the
frequency is 414/2000 = 0.207. This is the response at the
driving frequency 3= = vg. The next dominant frequency is
at 1242( with symmetric companion at 2000 — 1242 = 758)
which corresponds to 3vy. Other prominent peaks are at 138
Yo

corresponding to %2 ,at 69 corresponding to %2 .

2. We have analyzed the stability behavior of the sys-
tem in order to explain these phenomena.

3. The study has then been extended to the phase-
space behavior of the system where we have shown
the effects of nonlinearity in the form of deviation

from simple harmonic behavior.

4. Another signature of nonlinearity is the occurrence
of period-n bifurcations which we have studied in
quite detail.

5. In this connection we have generated the Poincare
sections, which by far remains one of the most pow-
erful tools for probing chaotic systems.

6. We have followed the system to chaos through pe-
riod doubling bifurcations.The strange attractor
has been obtained and its strange properties have
been discussed.

7. We have extended the study to the investigation of
subharmonic and superharmonic responses of the
oscillator. This may be done analytically by per-
turbation methods.We have resorted to the numer-
ical strategy by obtaining a Fourier transform of
the timeseries response. The peaks in this power
spectrum of th chaotic oscillator has indicated the
existence of harmonics other than the fundamental.

Scope remains of extending this study into the challeng-
ing inquiry of calculating the Lyapunov Exponent for this
system and to study the bifurcations in more detail to de-
termine whether the system gives the universal Feigen-
baum number.
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